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Abstract 

In this paper we compute the diagonal cohomology of the algebra Q of cohomology operations 

in the category of H--ring spectra, also known as the universal Steenrod algebra. Our meth- 

ods involve results about Koszul algebras. It turns out that D*(Q) is isomorphic to a suitable 
completion of Q itself. @ 1997 Published by Elsevier Science B.V. 

1991 Math. Subj. Class.: 55P99 

1. Introduction and statement of the results 

We recall that the mod2 universal Steenrod algebra Q can be presented as follows: 

Q= xk 1 X2k--l-&k = 
n-l-j 

i > 
(1) 

with k E Z and n E No. The algebra Q is an interesting object of investigation, as 

it contains A, the lambda algebra introduced in [l], as a subalgebra. Moreover, the 

Steenrod algebra is a quotient of Q. It would be nice to compute the cohomology 

algebra H(Q) =: Ext&Fz, IFS), but this problem is presently unsolved. In this paper we 

only succeed in giving a description of the so-called diagonal cohomology of Q. As 

H(Q) is a naturally bigraded object, we set 

@(Q> =: ff?Q) 

and find that 

D*(Q) P Q- 

the completion of Q itself with respect to a certain chain of ideals. 
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2. Cohomology of algebras 

Let T be the tensor algebra (on a field IF) over the set X. In the sequel X will 

always be of the form 

X={xj 1 iE9}, 

where XC Z. Moreover, we assume [F = jF2, although everything works in a more 

general contest. Let Tj be the [F-vector space spanned by the words (or monomials) 

on X of length j, for each j E N. We set TO = lF. An augmentation 

is obtained by setting clTo = Ida and E(U) = 0 for each monomial a of positive length. 

Clearly the unit 

q:F-T 

is just the inclusion into TO. If A is an augmented algebra with unit over [F, a presen- 

tation of A is an augmented epimorphism 

rc:T-A, 

where T is the tensor algebra over some suitable set A’. If we set yi = n(xi), we also 

say that A is presented by generators {vi 1 i E 3) and relations f(yi,, . . . , yii ) = 0, 

where f(xi, , . . . , xik ) E ker X. 

Example. Let & be the Steenrod algebra and 9 = NO. Then 

TC : Xi E T - Sq’ E d 

is a presentation of d and the elements of ker rc are polynomial expressions in the 

xi’s which are combinations of expressions of the form 

x0 + 1 or X&b •t c (b~~~.i)x&b_jxj, a < 2b. 

We will say that A is homogeneous if the polynomial expressions f(Xi, , . . . ,Xik ) E 

ker z are homogeneous. For instance, d is not homogeneous, because of the relation 

x0 + 1. Let J = ker E be the augmentation ideal, 

Definition. Let 

B(A)=:T(J)= @JC~...BJ . 
PEN - 0 k 

We define a map 

8 : i&(A) - B,_1(A) 
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by setting 

(&A),a) is a chain complex, known as the reduced bar construction, and from ho- 

mological algebra we know that it computes the homology and the cohomology of A, 

i.e. 

H,(A) =: TorA(F, F) 

is the homology of the chain complex (&A),d) and 

H*(A) =: ExtA(F, F) 

is the homology of the dual cochain complex (C(A), 6), which is called the reduced 

cobar complex. If f E C?(A) is a cochain, we have 

(6f>(m) =: f(+)) v m E &+1(4 

Let 

/J* :A* -A*@A* 

be the comultiplication in A*, dual to the multiplication p : A @ A -+ A. If 

CXI c~....c~cc, E C”(A), 

where each C(i is dual to some element ai E J, and we write 

we have 

In particular 

6(a) = p*(a), CI E J’ = ?(A). 

In (?(A) a graded product (cup product) is defined in the usual way. In general we 

will write cc(ii, . . , ik) for the element of A* dual to the monomial X, ,, . . ..Xi,. Assume A 

is homogeneous and let S? be a linear basis of monomials of A. If x. I, ...xg E 93, the 

string I = (i,, . , ik) will be called the label of xi, . . . Xik, and we write XI, a(1) instead 

Of Xi, . . .Xik, cr(il,. . . , ik). Let S be the set of all the labels of the monomials of 37. As 

A is homogeneous and B is a linear basis of monomials, any monomial &XI, of length 

2 can uniquely be expressed as 

&& = c f(a,kc,dhi, f E IF. (2) 
(c,dES 
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The above formula (2) is called the admissible expression of X&b. We have that 

{ 

cc(i)a(j) + C f(h,k; i,j)a(h)a(k) if (i,j) E S, 
&a(i,j)) = (h&MS (3) 

a(i)@(j) if (i,j) q! S. 

As A is graded by length, H*(A) is bigraded: the first grading is given by the homo- 

logical degree, the second by the length. We set 

ok(A) =: Hkk(A). 

The direct sum 

D*(A) = @ok(A) 

is stable with respect to the cup product and is therefore a subalgebra of H*(A), the 

diagonal cohomology algebra of A. 

Remark. There is an important class of algebras, the pre-Koszul algebras, characterised 

by the fact that they admit a presentation with a minimal set of relations only involving 

monomials of length less than or equal to 2. A homogeneous pre-Koszul algebra is 

actually a Koszul algebra if D*(A) = H**(A). The theory of Koszul algebras is closely 

related to the results presented in the sequel (see [6]). 

3. The universal Steenrod algebra 

By (mod2) universal Steenrod algebra we mean the algebra Q of cohomology op- 

erations in the category %(2,oo) of H,-ring spectra (see [5]). In [3, 41 we gave an 

invariant theoretical description of Q and also a presentation (1) in terms of generators 

and relations which generalise the Adem relations of the mod2 Steenrod algebra & 

and the defining relations of the n-algebra of [l]. As we have already seen, Q can be 

presented by a set of generators { xj 1 j E Z } and relations 

n-l-j 
x2k- 1 -dk = 

_i 
X2k--l-jxkij-n, k E Z, n E No, (4) 

which we call the generalised Adem relations. As we point out in [4], there are two 

important families of algebras which are closely related to Q. For each r E h we let 

L, be the subalgebra of Q generated by x,, x~-~, x,-2, . . . and set K’ =: Q/Z(r), where 

Z(r) is the two-sided ideal of Q generated by x,-i, ~~-2, x,-g, . . . . We point out that 

(i) Lo % /i; 

(ii) LI % ci (the algebra introduced in [2]); 

(iii) K”/Z E d (where Z = (x0 + 1)); 

(iv) K’ S ~JL (the Steenrod algebra for the category of simplicial Lie algebras). 

This is a motivation for the study of the cohomology of Q and its relations with the 

Adams spectral sequence. 
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4. Cohomology computations 

Let us compute the diagonal cohomology of L,. As L, is a subalgebra of Q, L, can 

be presented by generators xr, x,-i, x,-2, . . . and relations of two types. Firstly, we 

have all the generalised Adem relations which only involve such generators, i.e. 

n-l-j 
X2k-1--nXk = 

j > 
XZk-1-jxkij--n, k, 2k - 1 < Y. 

Moreover, there are relations which involve monomials of length greater than 2, which 

are still homogeneous and are combinations of generalised Adem relations involving 

generators with an index higher than r. For example, we have 

x2.X2 = x3x1 ; XjX] = 0 in Q. 

Hence 

x2x2x1 =x3x1x1 = 0 

Therefore 

in Q. 

X2X2X’ = 0 in L2 (5) 

as L2 is a subalgebra of Q. But the relation ~2x2 = ~3x1 cannot appear in a presentation 

of L2 as x3 $! L2. As a consequence, we need to impose the relation (5) which involves 

monomials of length 3. A basis of monomials for L, is given by the admissible mono- 

mials and some other monomials which are not admissible but cannot be expressed as 

sums of admissibles (because some Adem relations are missing in Lr). For example, 

a nonadmissible monomial X2k-_l-_nxk (with k,2k - 1 - 12 < r) is basic if and only if 

2k - 1 > r. In fact, if k, 2k - 1 5 r then the relation (4) appears in the presentation 

of L, and X2k__l__nXk is not basic (it is expressable as a sum of admissibles). On the 

other hand, if 2k - 1 > r but k, 2k - 1 - n < r, we have that X2&-& E L, but 

(4) does not appear in the presentation of L,, i.e. X2k__l__nXk cannot be expressed as a 

sum of admissible monomials. Hence such monomial is either basic or else it admits 

an expression as a sum of monomials (but not all of them are admissible). This lat- 

ter situation does not actually occur, as each nonadmissible monomial has a different 

top term in its admissible expression, as in (4) the summand (n~1)x2k-_1Xk-_n, which 

corresponds to j = 0, never vanishes, being (“i’) = 1. 

In order to compute D*(L,), we notice that 

@L,) = zi@(L,) = 
ker[GLk : Ck’k(L,) -+ Ckfl’k(L,)] 

im [dk-l,k : ck-l’k(L,.) --t ckk(L,.)] 

= ck,k(L) 
im ak-1,k . 

Ck-‘,k(L,) is spanned by cochains of the form 
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Hence D*(&) is presented by generators CL(~), i 5 r and relations of the form 

S’*2(a(i,j)) = 0. If XiXj is not admissible, but it is basic in L, (i.e. i, j < r but 

2j - 1 > r), XiXj does not appear in the expression of any other monomial of length 

2 as a sum of basic elements. Hence, from (2) and (3), we have that 

S(a(i,j)) = a(i) @ cc(j). 

Assume now i 2 2j and write i = 2j + e, e 2 0. From (3) we see that 

6(@j + 4, j)) = c$?j + l) @ a(j) + C f( j, d, h)a(2j + e - h) @3 a( j + h) (6) 
h 

with h such that j+h 5 r, where a(2j+e-h)@a(j+h) corresponds to a nonadmissible 

monomial x2j+e-@j+h, i.e. h iS such that 2j + 8 - h < 2j i- 2h, and f(j,e,h) is the 

Coefficient Of X2j+eXj in the admissible eXpreSSiOn Of X2j+(_hXj+h. AS X2j+&hxjfh k not 

admissible, there exists n E No such that 

2j+/-h=2j+2h-1-n. 

In other words n = 3h - L - 1. Let us look at the generalised Adem relation 

X2j+d-hXj+h = x2( j+h)- 1 _nXj+h = 
3h-e-2-p 

P > 
X2C_th)-1-pXj+2p-n. (7) 

We find the monomial Xzj+eXj in the sum on the RI-IS of (7) when 2( j + h) - 1 - p = 
2j + e i.e. p = 2h - 8 - 1. Hence its coefficient is 

( 
3h-~~~;~;~+l) = (,,Y;‘,). 

The generating relations (6) of D*(L, ) are therefore 

r(2j+~)~~(j)=~(2h~~~l)a(2j+l-h)@a(j+h) 
h 

(8) 

where 

e20; j+e,2j+e<r. 

The sum runs over those indices h such that j + h 5 r and we set 

a(2j + L - h) @ cI( j + h) = 0 

in the FUIS of (8) if 2j +e - h > r or j+ h > r. We summarize the above computation 

in the following statement: 

Proposition. For each integer r, the diagonal cohomology algebra D*(L,) of the sub- 
algebra L, of Q is presented by the set of generators { a(i) ) i I r } and relations (8) 
and a(i) &I a(j) = 0 ifxixi is basic but not admissible in L,.. 



L. Lomonaco I Journal of Pure and Applied Algebra 121 (1997) 315-323 321 

We now look at D*(Q). For each integer r, let 

i, : L, - L,+l 

be the inclusion. We have 

Q = yl&{L,,i,}. 

Proposition. 

H*(Q) ” im_{H*(L,),i,* }. 

Proof. We have a short exact sequence in cohomology 

0 --+ licm,l{H*(L,), iz} 

--+ H* (di~{L,, ir}) -5 l&r {H*(L,), if} - 0 (9) 

/I 
H*(Q) 

As L, is finite in each bidegree and i, preserves all the gradings, the Mittag-Leffler 

conditions are satisfied and the lim’ term vanishes in (9). Therefore @ is an isomor- 

phism. Cl 

Corollary 1. 

D*(Q) E li?, { D*(L,), i,’ }. 

Proof. Obvious, by restriction. 0 

We now observe that for each integer s the quotient algebra 

KS = Q/(x,-1,x,-2,x,-3,. . .) 

can be presented by generators x,, x,+1, x,+2, . . . and relations (4), with the convention 

that a monomial nixi has to be considered zero if i or j is less than s. 

Lemma 1. For each r E Z there is an epimorphism 

o, : K-‘+’ - II’( 

Proof. Define 

o, : K-‘+’ - D*(L,) 

by setting o&cj)= (a(-j+l)). It is straightforward to check that o, takes relations of 

K-‘+’ to relations of the form (8) of D*(L,). The fact that w, is epic is trivial. 0 
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We point out that we do not know whether or is an isomorphism. If so, the proof 

of the next theorem would become easier. 

Let rcs : KS ++ K ‘+I be the epimorphism defined by setting 

1 xi 
%(Xj) = O 

for j > s, 

for j = s. 

Lemma 2. For each integer r, the following diagram commutes: 

.* 
II* 2- ~*(L+l> 

WI T “r+, 
T 

K-r+1 - K-’ 
n-7 

Proof. Again, it is an easy verification on the generators. 0 

We can now consider the inverse system {K’,n,} and the increasing chain 

. ..) I(s),I(s+ l),Z(s+2), . . . (10) 

of ideals of Q. We have that 

where Q*is the completion of Q with respect to the chain (10) of ideals. We conclude 

with the following announced result. 

Theorem. 

D*(Q) g Q-. 

Proof. From Corollary 1, Lemmas 1 and 2, we have that 

D*(Q) E l&{D*(L& i;} 

and the sequence {co,} defines a homomorphism 

o : Q’-- D*(Q) 

of inverse limits, and it is easy to see that o is epic. We want to check that o is 

manic as well. Let B = {/I h } hEz E Q^be an admissible sequence, i.e. 

Ph E K-h+’ and bh = n-h(b-h+l). 

Suppose that pr # 0 and w,(/$) = 0 E D*(L,). As 

kero,=(x_~k+~+nx_-k+l 1 k,2k-1-n<r, 2k-1 >r) 

fi,. is a sum of monomials of the form x_2k+2+,,x_k+l with k,2k - 1 - n < r, 2k - 

1 > r. For m large enough, the relation (4) appears in the presentation of L,+m and 

o~+&?~+,,,) # 0. We deduce that from fi # 0 it follows that o(/?) # 0 and w is manic. 
0 
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